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LETTER TO THE EDITOR 

Exact solution of Potts random energy models with weak 
connectivity and of the many-states Potts spin glass 

Yadin Y Goldschmidtt 
Service de Physique ThCoriqueS, Centre d’Etudes Nucltaires de Saclay, F-91191 Gif-sur- 
Yvette Cedex. France 

Received 14 December 1988 

Abstract. We generalise Derrida’s random energy model to the Potts spin glass with p-spin 
interactions in the limit of large p .  We solve the model exactly for the cases of strong and 
weak connectivity. In the latter case we show how to solve the model using replicas and 
obtain a solution for the value of the set of order parameters Q,I, I & , .  We then derive the 
large-q limit of the ordinary q-state Potts spin glass on a lattice with finite connectivity. 

Much interest has been devoted recently to spin glasses and other frustrated models 
defined on random lattices with diluted bonds, where the bond probability distribution 
is of the form 

Such models arise naturally in the theory of combinatorial optimisation, like the graph 
partitioning problem [ 1-31, Two cases may be distinguished. 

(i)  y is of order unity and ( J ; )  - (JU)* - 1/ N where N is the number of lattice sites. 
This is the strong-connectivity case which gives rise to an infinite-ranged model of the 
Sherrington-Kirkpatrick (SK)  type [4]. 

(ii) On the other hand, when J g  are of order unity but y = c/  N one obtains a 
model with an average finite connectivity. This model may still be thought of as some 
kind of mean-field theory because the probability of small loops is of O( 1/ N ) ,  so 
locally the lattice looks like a tree [2]. This mean-field theory differs from the infinite- 
ranged model which corresponds to case (i). 

It has been shown recently [5-71 that for the king and Potts models defined on 
lattices with weak connectivity, replica symmetry breaking ( RSB) occurs in the vicinity 
of the critical point, and numerical evidence [8] indicates that this phenomenon 
continues to low temperatures. Recently De Dominicis and Mottishaw [9] found a 
solution to the Derrida p-spin model [lo, 111 when p + CO in the weak-connectivity 
case at any temperature in the presence of RSB. 

Our aim here is twofold. First we show how to extend the p-spin model to the 
case of Potts variables, which has not been done previously, and obtain the solution 
of the model in the strong- and weak-connectivity cases when p + CO for any value of 
q, the number of Potts states. We also show that when q+CO the limit of large p is 
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redundant; hence the solution of the many-states ordinary Potts spin glass in the 
weak-connectivity case is obtained. 

We have found that in order to define a generalisation of the Derrida p-spin model 
one cannot start from the ordinary Potts glass Hamiltonian, but rather from the ‘gauge 
invariant’ Potts spin-glass model [12, 131. We define the Potts p-spin model by the 
classical Hamiltonian 

where the variables ui take their values among the qth-order roots of unity and the 
sum ( i l ,  . . . , i,,) is over distinct p-plets of spins. The couplings J!r,!,,,ip are quenched 
random variables which are distributed according to a generalisation of (1). One can 
choose p to be a Gaussian distribution, but instead in this letter we use a discrete 
distribution 

and 

8 = exp(2~riq).  

Substituting (3) into (2), the Hamiltonian can be written in the form 

This Hamiltonian possesses the local gauge symmetry 

and the same is true for the probability distribution P ( T ~ , , , , , , ~ ~ ) ,  where p, are chosen 
from among the set of qth roots of unity. 

For the case y = 1 and J 2  = J ; p ! / N P - ’ ,  this model becomes a random energy model 
when p tends to infinity. In this case it can be readily verified that the probability of 
M arbitrary, macroscopically distinct configurations to have energies El , .  . . , EM 
factorises in the limit p +CO (in an analogous calculation to [lo]):  

P ( E )  = (TrJ;N(q- I ) ) - ’ / ’  exp{-E2/[J;N(q - 11).  (9) 

This model has q N  states instead of Derrida’s 2N, and its free energy site for T >  T, 
is given by ( P  = 1/ T ) :  

( 1 0 )  1 2 2  
- P f  = 1 n 4 + 4P J o  ( 4 - 1 1 

and for T < T, the free energy is frozen and given by 

f =  -Jo[(q  - 1) In q]’” 

where 

T,=tJo[(q-l)/ ln q ] ’ / *  
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is the temperature below which the entropy vanishes. Of course one could define the 
qN-state random energy model as a model uf q N  independent random energy levels 
distributed according to (7) but the model ( 2 )  provides a useful realisation which can 
later be extended to the weak-connectivity case. It also allows an investigation of the 
spin-glass order parameters using replicas. 

We make here two remarks: firstly that in the strong-connectivity case the results 
are independent of the particular distribution chosen; secondly, the ordinary Potts 
spin glass defined by the Hamiltonian 

gives, in the limit of large q [14], results similar to those represented by equations 
(lo)-(  12). Better understanding of this point will be gained below. 

We now turn to the weak-connectivity case for which we take y = c p ! / 2 N P - ’  in 
equation (4) and J =.To is of O( 1) with respect to N. In that case we evaluate the 
probability of M distinct configurations to have energies E l , .  . . , E,,,, and find in the 
limit of large p (analogously to [9]): 

where 

Q ( 2 )  = dx exp{ix$+4cN[exp(x) - I]} 

q - 1  
9 

exp[iwJo( q - I ) ]  +- exp( -iwJo) 

From (14)-(16) we derive the free energy per site 

-pf=In q + ; c  ln(-exp[PJo(q- 1 l ) ITQexp(-PJO))  q - 1  
4 

for T > T,. The critical temperature T, is the temperature at which the entropy vanishes. 
Below T, the entropy is null and the free energy remains frozen. 

This happens only for c > 2 .  When c < 2  

S (  T =  0) = (1 - c / 2 )  In q (18) 

and there is no spin-glass transition. Note that if Jo+ J0/& and c + CO one recovers 
(10) from (17). Also the result (17)  does depend on the particular bond distribution 
taken. We now derive this result using the replica approach. Furthermore, we show 
that in the large-q limit, the result stands even without taking the p + CO limit, i.e. it is 
valid for p = 2 as has been true in the strong-connectivity case. For the case q = 2 ,  
(17) agrees with the result of [9]. 

We use the following identity which we derived previously [7]: 
/ n \ m  

with 
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(21) 

to express the free energy in the form 

where the sum over r, runs from 1 to q - 1 and the prime stands for the constraint 
r1  +. . . + r, = 0 (mod q ) ,  and the sum over replicas is over distinct sets. 

We now introduce a one-step RSB by dividing the replicas into ( n / m )  boxes, each 
of size m: (Y = ( K ,  y )  where K is the box number and y is the replica number in a 
box. We then parametrise Q (and A )  in the following way: 

0:;. ,:A\ = Q;:;,v,}. (24) 

Here vf is the number of boxes of replicas with t spins in a box for which the sum of 
the corresponding upper indices satisfies r,, +. . . + r,, = 0 (mod q ) ,  whereas T~ is the 
number of boxes with t spins for which the upper indices satisfy r,] + . . . + r,! # 0 (mod 4). 
Of course 

t ( v l + T r ) = S .  
1 = 1  

Similarly one defines 

where the sum is restricted to a given partition of the spins into the boxes and the sum 
of r variables in each box is constrained as given by the variables { vl, vf}  (i.e. 81r,0 for 
v and (1 - 6,,,) for 7). The function 2 in (23) can thus be written as 

where we introduce the variables 

/ = o  y = l  

and 0 has been defined in ( 5 ) ,  K = 1,. . . , ( n / m )  and j = 0, . . . , q - 1. The crucial point 
is that we have shown that in the large-p limit all the spins in a given box lock into a 
common value. This means that only such configurations dominate the sum in (27). 

The trace over the spins is effectively replaced by the measure 
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or, alternatively, for the variables TK,j  by the measure 

It is then straightforward to show that in (27) only those r(’) which are labelled only 
by the variables v, survive (i.e. any r(’) for which any 7, f 0 does not contribute to 
the sum) and 

Since the first term on the RHS of (22) can be written as 

-e c Ql:;,v,}i4:;, I ) , d { f l K y  = 1)) 
.y { ~ , , T , }  

it follows by the stationarity condition with respect to A, that below T, 

QiSyj) = 1 (33) 

The last expression can be easily evaluated, and we finally find ( T  < T,): 

Stationarity with respect to m requires m = p C / p  where pc is the value for which the 
entropy vanishes. Thus we reover the exact result stated below (17). 

We now turn to the large-q limit of the ordinary Potts spin glass. In the case p = 2 
equation (22) takes the form 

Notice that the second term in (34) is identical to (the logarithm of) (29) with A 
replaced by Q. 

It turns out that for q+co and low temperature, the locking of the spin variables 
in the same box occurs, and one can use (30) and its consequences; in particular (33) 
follows by stationarity with respect to Q and all other Q with some 7, # 0 being null. 
One can then proceed similarly to (34). It turns out that when q + 00 one has to scale 
the temperature in the following way: 

exp(qpJo) = 1 + q k  (37) 
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where k is of 0 ( 1 )  with respect to q. The critical point is then given by 

K ,  = 2 / ( c  - 2 )  +0(1/ln q ) .  

-pf= In q + fc I n ( l +  2 )  + o ( l / q )  B < K ,  (39) 

- P J =  In q ++c l n ( l +  K,) + o ( l / q )  

N - ' E  = -Joq[ 1 + O( l / l n  q)]. 

(38) 

The free energy is given by the large-q limit of (17) and  (35): 

K > K,. (40) 

Below T, the entropy vanishes and 

(41) 

It is interesting to note that below T, the energy is independent of c to leading order. 
The solution of the ordinary Potts spin glass on the weak-connectivity lattice in 

the limit of large q is important, since if one could calculate corrections to the leading 
behaviour one would be able to understand the structure of the finite-q models which 
are not yet understood away from the vicinity of T,. The solution can also be generalised 
to include a magnetic field. 

Support by the National Science Foundation under grant DMR-8709704 is gratefully 
acknowledged. I thank Dr  C De Dominicis for filling me in on some of the details of 
the calculation of [9]. 
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